JsExt
Additional functions for JavaScript to build strong applications.
Import
// Node.js
import jsext from "@ayonli/jsext";
// Deno
import jsext from "https://lib.deno.dev/x/ayonli_jsext@latest/index.ts";
// Browser
import jsext from "https://lib.deno.dev/x/ayonli_jsext@latest/esm/index.js";
There is also a bundled version that can be loaded via a <script>
tag in the browser.
<script src="https://lib.deno.dev/x/ayonli_jsext@latest/bundle/index.js"></script>
<script>
const jsext = window["@ayonli/jsext"];
// this will also include the sub-packages and augmentations
<script>
Functions
- jsext.try Call a function safely and return errors when captured.
- jsext.func Define a function along with a
defer
keyword, inspired by Golang. - jsext.wrap Wrap a function for decorator pattern but keep its signature.
- jsext.throttle Throttle function calls for frequent access.
- jsext.queue Handle tasks sequentially and prevent concurrency conflicts.
- jsext.mixins Define a class that inherits methods from multiple base classes.
- jsext.isSubclassOf Check if a class is a subset of another class.
- jsext.read Make any streaming source readable via
for await ... of ...
syntax. - jsext.readAll Read all streaming data at once.
- jsext.chan Create a channel that transfers data across routines, even between multiple threads, inspired by Golang.
- jsext.parallel Run functions in parallel threads and take advantage of multi-core CPUs, inspired by Golang.
- jsext.run Run a script in another thread and abort at any time.
- jsext.example Write unit tests as if writing examples, inspired by Golang.
- jsext.deprecate Mark a function as deprecated and emit warnings when it is called.
And other functions in sub-packages.
jsext.try
function _try<E = unknown, R = any, A extends any[] = any[]>(
fn: (...args: A) => R,
...args: A
): [E, R];
function _try<E = unknown, R = any, A extends any[] = any[]>(
fn: (...args: A) => Promise<R>,
...args: A
): Promise<[E, R]>;
Invokes a regular function or an async function and renders its result in an [err, res]
tuple.
Example (regular function)
const [err, res] = _try(() => {
// do something that may fail
});
Example (async function)
let [err, res] = await _try(async () => {
return await axios.get("https://example.org");
});
if (err) {
res = (err as any)["response"];
}
function _try<E = unknown, R = any>(job: Promise<R>): Promise<[E, R]>;
Resolves a promise and renders its result in an [err, res]
tuple.
Example (promise)
let [err, res] = await _try(axios.get("https://example.org"));
if (err) {
res = (err as any)["response"];
}
function _try<E = unknown, T = any, A extends any[] = any[], TReturn = any, TNext = unknown>(
fn: (...args: A) => Generator<T, TReturn, TNext>,
...args: A
): Generator<[E, T], [E, TReturn], TNext>;
function _try<E = unknown, T = any, A extends any[] = any[], TReturn = any, TNext = unknown>(
fn: (...args: A) => AsyncGenerator<T, TReturn, TNext>,
...args: A
): AsyncGenerator<[E, T], [E, TReturn], TNext>;
Invokes a generator function or an async generator function and renders its yield value and result
in an [err, val]
tuple.
Example (generator function)
const iter = _try(function* () {
// do something that may fail
});
for (const [err, val] of iter) {
if (err) {
console.error("something went wrong:", err);
} else {
console.log("current value:", val);
}
}
Example (async generator function)
const iter = _try(async function* () {
// do something that may fail
});
for await (const [err, val] of iter) {
if (err) {
console.error("something went wrong:", err);
} else {
console.log("current value:", val);
}
}
function _try<E = unknown, T = any, TReturn = any, TNext = unknown>(
gen: Generator<T, TReturn, TNext>
): Generator<[E, T], [E, TReturn], TNext>;
function _try<E = unknown, T = any, TReturn = any, TNext = unknown>(
gen: AsyncGenerator<T, TReturn, TNext>
): AsyncGenerator<[E, T], [E, TReturn], TNext>;
Resolves a generator or an async generator and renders its yield value and result in an [err, val]
tuple.
Example (generator)
const iter = Number.sequence(1, 10);
for (const [err, val] of _try(iter)) {
if (err) {
console.error("something went wrong:", err);
} else {
console.log("current value:", val);
}
}
Example (async generator)
async function* gen() {
// do something that may fail
};
for await (const [err, val] of _try(gen())) {
if (err) {
console.error("something went wrong:", err);
} else {
console.log("current value:", val);
}
}
jsext.func
function func<T, R = any, A extends any[] = any[]>(
fn: (this: T, defer: (cb: () => void) => void, ...args: A) => R
): (this: T, ...args: A) => R;
Inspired by Golang, creates a function that receives a defer
keyword which can be used
to carry deferred jobs that will be run after the main function is complete.
Multiple calls of the defer
keyword is supported, and the callbacks are called in the
LIFO order. Callbacks can be async functions if the main function is an async function or
an async generator function, and all the running procedures will be awaited.
Example
const getVersion = func(async (defer) => {
const file = await fs.open("./package.json", "r");
defer(() => file.close());
const content = await file.readFile("utf8");
const pkg = JSON.parse(content);
return pkg.version as string;
});
jsext.wrap
function wrap<T, Fn extends (this: T, ...args: any[]) => any>(
fn: Fn,
wrapper: (this: T, fn: Fn, ...args: Parameters<Fn>) => ReturnType<Fn>
): Fn
Wraps a function inside another function and returns a new function that copies the original function's name and other properties.
Example
function log(text: string) {
console.log(text);
}
const show = wrap(log, function (fn, text) {
return fn.call(this, new Date().toISOString() + " " + text);
});
console.log(show.name); // log
console.log(show.length); // 1
console.assert(show.toString() === log.toString());
jsext.throttle
function throttle<T, Fn extends (this: T, ...args: any[]) => any>(
handler: Fn,
duration: number
): Fn;
function throttle<T, Fn extends (this: T, ...args: any[]) => any>(handler: Fn, options: {
duration: number;
/**
* Use the throttle strategy `for` the given key, this will keep the result in a global
* cache, binding new `handler` function for the same key will result in the same result
* as the previous, unless the duration has passed. This mechanism guarantees that both
* creating the throttled function in function scopes and overwriting the handler are
* possible.
*/
for?: any;
/**
* When turned on, respond with the last cache (if available) immediately, even if it has
* expired, and update the cache in the background.
*/
noWait?: boolean;
}): Fn;
Creates a throttled function that will only be run once in a certain amount of time.
If a subsequent call happens within the duration
(in milliseconds), the previous result will
be returned and the handler
function will not be invoked.
Example
const fn = throttle((input: string) => input, 1_000);
console.log(fn("foo")); // foo
console.log(fn("bar")); // foo
await Promise.sleep(1_000);
console.log(fn("bar")); // bar
Example (with key)
const out1 = await throttle(() => Promise.resolve("foo"), { duration: 1_000, for: "example" })();
console.log(out1); // foo
const out2 = await throttle(() => Promise.resolve("bar"), { duration: 1_000, for: "example" })();
console.log(out2); // foo
await Promise.sleep(1_000);
const out3 = await throttle(() => Promise.resolve("bar"), { duration: 1_000, for: "example" })();
console.log(out3); // bar
jsext.queue
function queue<T>(handler: (data: T) => Promise<void>, bufferSize?: number): Queue<T>
Processes data sequentially by the given handler
function and prevents concurrency
conflicts, it returns a Queue
instance that we can push data into.
bufferSize
is the maximum capacity of the underlying channel, once reached, the push
operation will block until there is new space available. By default, this option is not set and
use a non-buffered channel instead.
Example
const list: string[] = [];
const q = queue(async (str: string) => {
await Promise.resolve(null);
list.push(str);
});
q.onError(err => {
console.error(err);
});
await q.push("foo");
await q.push("foo");
console.log(list.length);
q.close();
// output:
// 2
jsext.mixins
function mixins<T extends Constructor<any>, M extends any[]>(
base: T,
...mixins: { [X in keyof M]: Constructor<M[X]> }
): T & Constructor<UnionToIntersection<FlatArray<M, 1>>>;
function mixins<T extends Constructor<any>, M extends any[]>(
base: T,
...mixins: M
): T & Constructor<UnionToIntersection<FlatArray<M, 1>>>;
Returns an extended class that combines all mixin methods.
This function does not mutates the base class but create a pivot class instead.
Example
class Log {
log(text: string) {
console.log(text);
}
}
class View {
display(data: Record<string, any>[]) {
console.table(data);
}
}
class Controller extends mixins(View, Log) {
constructor(readonly topic: string) {
super();
}
}
const ctrl = new Controller("foo");
ctrl.log("something is happening");
ctrl.display([{ topic: ctrl.topic, content: "something is happening" }]);
console.assert(isSubclassOf(Controller, View));
console.assert(!isSubclassOf(Controller, Log));
jsext.isSubclassOf
function isSubclassOf<A, B>(ctor1: Constructor<A>, ctor2: Constructor<B>): boolean;
Checks if a class is a subclass of another class.
Example
class Moment extends Date {}
console.assert(isSubclassOf(Moment, Date));
console.assert(isSubclassOf(Moment, Object)); // all classes are subclasses of Object
jsext.read
function read<I extends AsyncIterable<any>>(iterable: I): I;
function read(es: EventSource, options?: { event?: string; }): AsyncIterable<string>;
function read<T extends Uint8Array | string>(ws: WebSocket): AsyncIterable<T>;
function read<T>(target: EventTarget, eventMap?: {
message?: string;
error?: string;
close?: string;
}): AsyncIterable<T>;
function read<T>(target: NodeJS.EventEmitter, eventMap?: {
data?: string;
error?: string;
close?: string;
}): AsyncIterable<T>;
Wraps a source as an AsyncIterable object that can be used in the for await...of...
loop
for reading streaming data.
Example (EventSource)
// listen to the `onmessage`
const sse = new EventSource("/sse/message");
for await (const msg of read(sse)) {
console.log("receive message:", msg);
}
// listen to a specific event
const channel = new EventSource("/sse/broadcast");
for await (const msg of read(channel, { event: "broadcast" })) {
console.log("receive message:", msg);
}
Example (WebSocket)
const ws = new WebSocket("/ws");
for await (const data of read(ws)) {
if (typeof data === "string") {
console.log("receive text message:", data);
} else {
console.log("receive binary data:", data);
}
}
Example (EventTarget)
for await (const msg of read(self)) {
console.log("receive message from the parent window:", msg);
}
Example (EventEmitter)
for await (const msg of read(process)) {
console.log("receive message from the parent process:", msg);
}
jsext.readAll
function readAll<T>(iterable: AsyncIterable<T>): Promise<T[]>;
Reads all values from the iterable object at once.
Example
const file = fs.createReadStream("./package.json");
const chunks = await readAll(file);
jsext.chan
function chan<T>(capacity?: number): Channel<T>;
Inspired by Golang, cerates a Channel
that can be used to transfer data across routines.
If capacity
is not set, a non-buffered channel will be created. For a non-buffered channel,
the sender and receiver must be present at the same time (theoretically), otherwise, the
channel will block (non-IO aspect).
If capacity
is set, a buffered channel will be created. For a buffered channel, data will
be queued in the buffer first and then consumed by the receiver in FIFO order. Once the
buffer size reaches the capacity limit, no more data will be sent unless there is new space
available.
It is possible to set the capacity
to Infinity
to allow the channel to never block
and behave like a message queue.
Unlike EventEmitter
or EventTarget
, Channel
guarantees the data will always be delivered,
even if there is no receiver at the moment.
Also, unlike Golang, await channel.pop()
does not prevent the program from exiting.
Channels can be used to send and receive streaming data between main thread and worker threads
wrapped by parallel()
, but once used that way, channel.close()
must be explicitly called
in order to release the channel for garbage collection.
Example (non-buffered)
const channel = chan<number>();
(async () => {
await channel.push(123);
})();
const num = await channel.pop();
console.log(num); // 123
Example (buffered)
const channel = chan<number>(3);
await channel.push(123);
await channel.push(456);
await channel.push(789);
const num1 = await channel.pop();
const num2 = await channel.pop();
const num3 = await channel.pop();
console.log(num1); // 123
console.log(num2); // 456
console.log(num3); // 789
Example (iterable)
const channel = chan<number>();
(async () => {
for (const num of Number.sequence(1, 5)) {
await channel.push(num);
}
channel.close();
})();
for await (const num of channel) {
console.log(num);
}
// output:
// 1
// 2
// 3
// 4
// 5
jsext.parallel
function parallel<M extends { [x: string]: any; }>(
mod: string | (() => Promise<M>)
): ThreadedFunctions<M>;
Wraps a module so its functions will be run in worker threads.
In Node.js and Bun, the module
can be either an ES module or a CommonJS module,
node_modules and built-in modules are also supported.
In browsers and Deno, the module
can only be an ES module.
Data are cloned and transferred between threads via Structured Clone Algorithm.
Apart from the standard data types supported by the algorithm, Channel
can also be
used to transfer data between threads. To do so, just passed a channel instance to the threaded
function. But be aware, channel can only be used as a parameter, return a channel from the
threaded function is not allowed. Once passed, the data can only be transferred into and
out-from the function.
The difference between using a channel and a generator function for streaming processing is, for
a generator function, next(value)
is coupled with a yield value
, the process is blocked
between next calls, channel doesn't have this limit, we can use it to stream all the data
into the function before processing and receiving any result.
The threaded function also supports ArrayBuffer
s as transferable objects. If an array buffer is
presented as an argument or the direct property of an argument (assume it's a plain object), or
the array buffer is the return value or the direct property of the return value (assume it's a
plain object), it automatically becomes a transferrable object and will be transferred to the
other thread instead of being cloned. This strategy allows us to easily compose objects like
Request
and Response
instances into plain objects and pass them between threads without
overhead.
NOTE: if the current module is already in a worker thread, use this function won't create another worker thread.
NOTE: cloning and transferring data between the main thread and worker threads are very heavy
and slow, worker threads are only intended to run CPU-intensive tasks or divide tasks among
multiple threads, they have no advantage when performing IO-intensive tasks such as handling HTTP
requests, always prefer cluster
module for that kind of purpose.
NOTE: for error instances, only the following types are guaranteed to be sent and received properly between threads.
Error
EvalError
RangeError
ReferenceError
SyntaxError
TypeError
URIError
AggregateError
(as arguments, return values, thrown values, or shallow object properties)Exception
(as arguments, return values, thrown values, or shallow object properties)DOMException
(as arguments, return values, thrown values, or shallow object properties)
In order to handle errors properly between threads, throw well-known error types or use
Exception
(or DOMException
) with error names in the threaded function.
Example (regular or async function)
const mod = parallel(() => import("./examples/worker.mjs"));
console.log(await mod.greet("World")); // Hi, World
Example (generator or async generator function)
const mod = parallel(() => import("./examples/worker.mjs"));
for await (const word of mod.sequence(["foo", "bar"])) {
console.log(word);
}
// output:
// foo
// bar
Example (use channel)
const mod = parallel(() => import("./examples/worker.mjs"));
const channel = chan<{ value: number; done: boolean; }>();
const length = mod.twoTimesValues(channel);
for (const value of Number.sequence(0, 9)) {
await channel.push({ value, done: value === 9 });
}
const results = (await readAll(channel)).map(item => item.value);
console.log(results); // [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
console.log(await length); // 10
Example (use transferrable)
const mod = parallel(() => import("./examples/worker.mjs"));
const arr = Uint8Array.from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
const length = await mod.transfer(arr.buffer);
console.log(length); // 10
console.log(arr.length); // 0
NOTE: if the application is to be bundled, use the following syntax to link the module instead, it will prevent the bundler from including the file and rewriting the path.
const mod = parallel<typeof import("./examples/worker.mjs")>("./examples/worker.mjs");
namespace parallel {
/**
* The maximum number of workers allowed to exist at the same time. If not set, the program
* by default uses CPU core numbers as the limit.
*/
export var maxWorkers: number | undefined;
/**
* In browsers, by default, the program loads the worker entry directly from GitHub,
* which could be slow due to poor internet connection, we can copy the entry file
* `bundle/worker.mjs` to a local path of our website and set this option to that path
* so that it can be loaded locally.
*
* Or, if the code is bundled, the program won't be able to automatically locate the entry
* file in the file system, in such case, we can also copy the entry file
* (`bundle/worker.mjs` for Bun, Deno and the browser, `bundle/worker-node.mjs` for Node.js)
* to a local directory and supply this option instead.
*/
export var workerEntry: string | undefined;
}
jsext.run
function run<R, A extends any[] = any[]>(script: string, args?: A, options?: {
/** If not set, invoke the default function, otherwise invoke the specified function. */
fn?: string;
/** Automatically abort the task when timeout (in milliseconds). */
timeout?: number;
/**
* Instead of dropping the worker after the task has completed, keep it alive so that it can
* be reused by other tasks.
*/
keepAlive?: boolean;
/**
* Choose whether to use `worker_threads` or `child_process` for running the script.
* The default setting is `worker_threads`.
*
* In browsers and Deno, this option is ignored and will always use the web worker.
*
* @deprecated Always prefer `worker_threads` over `child_process` since it consumes
* less system resources. `child_process` support may be removed in the future once
* considered thoroughly.
*/
adapter?: "worker_threads" | "child_process";
}): Promise<{
workerId: number;
/** Retrieves the return value of the function being called. */
result(): Promise<R>;
/** Iterates the yield value if the function being called returns a generator. */
iterate(): AsyncIterable<R>;
/** Terminates the worker thread and aborts the task. */
abort(reason?: Error | null): Promise<void>;
}>;
Runs the given script
in a worker thread and abort the task at any time.
This function is similar to parallel()
, many features applicable to parallel()
are
also applicable to run()
, except the following:
- The
script
can only be a filename, and is relative to the current working directory (or the current URL) if not absolute. - Only one task is allow to run at a time for one worker thread, set
run.maxWorkers
to allow more tasks to be run at the same time if needed. - By default, the worker thread is dropped after the task settles, set
keepAlive
option in order to reused it.
Example (result)
const job1 = await run<string, [string]>("examples/worker.mjs", ["World"]);
console.log(await job1.result()); // Hello, World
Example (iterate)
const job2 = await run<string, [string[]]>("examples/worker.mjs", [["foo", "bar"]], {
fn: "sequence",
});
for await (const word of job2.iterate()) {
console.log(word);
}
// output:
// foo
// bar
Example (abort)
const job3 = await run<string, [string]>("examples/worker.mjs", ["foobar"], {
fn: "takeTooLong",
});
await job3.abort();
const [err, res] = await _try(job3.result());
console.assert(err === null);
console.assert(res === undefined);
namespace run {
/**
* The maximum number of workers allowed to exist at the same time. If not set, use the same
* setting as {@link parallel.maxWorkers}.
*/
var maxWorkers: number | undefined;
}
jsext.example
function example<T, A extends any[] = any[]>(
fn: (this: T, console: Console, ...args: A) => void | Promise<void>,
options?: {
/** Suppress logging to the terminal and only check the output. */
suppress?: boolean;
}
): (this: T, ...args: A) => Promise<void>;
Inspired by Golang's Example as Test design, creates a function that carries example code
with // output:
comments, when the returned function is called, it will automatically check if
the actual output matches the one declared in the comment.
The example function receives a customized console
object which will be used to log outputs
instead of using the built-in console
.
NOTE: this function is used to simplify the process of writing tests, it does not work in Bun and
browsers currently, because Bun hasn't implement the Console
constructor and removes comments
during runtime, and the function relies on Node.js built-in modules.
Example
it("should output as expected", example(console => {
console.log("Hello, World!");
// output:
// Hello, World!
}));
jsext.deprecate
function deprecate<T, Fn extends (this: T, ...args: any[]) => any>(
fn: Fn,
tip?: string,
once?: boolean
): Fn;
Marks a function as deprecated and returns a wrapped function.
When the wrapped function is called, a deprecation warning will be emitted to the stdout.
NOTE: the original function must have a name.
Example
const sum = deprecate(function sum(a: number, b: number) {
return a + b;
}, "use `a + b` instead");
console.log(sum(1, 2));
// output:
// DeprecationWarning: sum() is deprecated, use `a + b` instead (at <anonymous>:4:13)
// 3
function deprecate(target: string, forFn: Function, tip?: string, once?: boolean): void;
Emits a deprecation warning for the target, usually a parameter, an option, or the function's name, etc.
Example
const pow = function pow(a: number, b: number) {
deprecate("pow()", pow, "use `a ** b` instead");
return a ** b;
};
console.log(pow(2, 3));
// output:
// DeprecationWarning: pow() is deprecated, use `a ** b` instead (at <anonymous>:5:13)
// 8
Types
Channel<T>
Queue<T>
AsyncFunction
AsyncGeneratorFunction
AsyncFunctionConstructor
Constructor<T>
TypedArray
Optional<T, K extends keyof T>
Ensured<T, K extends keyof T>
When augmenting, these types are exposed to
the global scope (except for Channel
and Queue
).
Sub-packages
- string Functions for dealing with strings.
- number Functions for dealing with numbers.
- array Functions for dealing with arrays.
- uint8array Functions for dealing with
Uint8Array
s. - object Functions for dealing with objects.
- json Functions for parsing JSONs to specific structures.
- math Functions for the mathematical calculations.
- promise Functions for promise/async context handling.
- error Functions for transferring errors to/from other types of objects.
- collections Additional collection data types.
NOTE: Configure tsconfig.json
to set compilerOptions.module
as NodeNext
or ESNext
instead of CommonJS
in order to use sub-packages.
NOTE: The following examples of module specifiers uses Node.js style, but they have Deno and browser equivalents, like this:
- Node.js
@ayonli/jsext/string
- Deno:
https://lib.deno.dev/x/ayonli_jsext@latest/string/index.ts
- Browser:
https://lib.deno.dev/x/ayonli_jsext@latest/esm/string/index.js
string
import { compare, random, /* ... */ } from "@ayonli/jsext/string";
// or
import "@ayonli/jsext/string/augment";
Functions
compare(str1: string, str2: string): -1 | 0 | 1
random(length: number): string
count(str: string, sub: string): number
capitalize(str: string, all?: boolean): string
hyphenate(str: string): string
words(str: string): string[]
chunk(str: string, length: number): string[]
truncate(str: string, length: number): string
trim(str: string, chars?: string): string
trimEnd(str: string, chars?: string): string
trimStart(str: string, chars?: string): string
stripEnd(str: string, suffix: string): string
stripStart(str: string, prefix: string): string
byteLength(str: string): number
String
compare(str1: string, str2: string): -1 | 0 | 1
random(length: number): string
prototype
count(sub: string): number
capitalize(all?: boolean): string
hyphenate(): string
words(): string[]
chunk(length: number): string[]
truncate(length: number): string
trim(chars?: string): string
trimEnd(chars?: string): string
trimStart(chars?: string): string
stripEnd(suffix: string): string
stripStart(prefix: string): string
byteLength(): number
number
import { isFloat, isNumeric, /* ... */ } from "@ayonli/jsext/number";
// or
import "@ayonli/jsext/number/augment";
Functions
isFloat(value: unknown): boolean
isNumeric(value: unknown): boolean
isBetween(value: number, [min, max]: [number, number]): boolean
random(min: number, max: number): number
sequence(min: number, max: number, step?: number, loop?: boolean): Generator<number, void, unknown>
When augmenting, these functions
are attached to the Number
constructor.
array
import { count, equals, /* ... */ } from "@ayonli/jsext/array";
// or
import "@ayonli/jsext/array/augment";
Functions
first<T>(arr: T[]): T | undefined
last<T>(arr: T[]): T | undefined
random<T>(arr: T[], remove?: boolean): T | undefined
count<T>(arr: RealArrayLike<T>, ele: T): number
equals<T>(arr1: RealArrayLike<T>, arr2: RealArrayLike<T>): boolean
split<T>(arr: RealArrayLike<T>, delimiter: T): RealArrayLike<T>[]
chunk<T>(arr: RealArrayLike<T>, length: number): RealArrayLike<T>[]
uniq<T>(arr: T[]): T[]
shuffle<T>(arr: T[]): T[]
orderBy<T>(arr: T[], key: keyof T, order: "asc" | "desc" = "asc"): T[]
groupBy<T, K extends string | number | symbol>(arr: T[], fn: (item: T, i: number) => K, type?: ObjectConstructor): Record<K, T[]>
groupBy<T, K>(arr: T[], fn: (item: T, i: number) => K, type: MapConstructor): Map<K, T[]>
keyBy<T, K extends string | number | symbol>(arr: T[], fn: (item: T, i: number) => K, type?: ObjectConstructor): Record<K, T>
keyBy<T, K>(arr: T[], fn: (item: T, i: number) => K, type: MapConstructor): Map<K, T>
Array<T>
prototype
first(): T | undefined
last(): T | undefined
random(remove?: boolean): T | undefined
count(ele: T): number
equals(another: T[]): boolean
split(delimiter: T): T[][]
chunk(length: number): T[][]
uniq(): T[]
shuffle(): T[]
toShuffled(): T[]
toReversed(): T[]
toSorted(fn?: ((a: T, b: T) => number) | undefined): T[]
orderBy(key: keyof T, order?: "asc" | "desc"): T[]
groupBy<K extends string | number | symbol>(fn: (item: T, i: number) => K, type?: ObjectConstructor): Record<K, T[]>
groupBy<K>(fn: (item: T, i: number) => K, type: MapConstructor): Map<K, T[]>
keyBy<K extends string | number | symbol>(fn: (item: T, i: number) => K, type?: ObjectConstructor): Record<K, T>
keyBy<K>(fn: (item: T, i: number) => K, type: MapConstructor): Map<K, T>
uint8array
import { compare, equals, /* ... */ } from "@ayonli/jsext/uint8array";
// or
import "@ayonli/jsext/uint8array/augment";
Functions
copy(src: Uint8Array, dest: Uint8Array): number
concat<T extends Uint8Array>(...arrays: T[]): T
compare(arr1: Uint8Array, arr2: Uint8Array): -1 | 0 | 1
equals(arr1: Uint8Array, arr2: Uint8Array): boolean
split<T extends Uint8Array>(arr: T, delimiter: number): T[]
chunk<T extends Uint8Array>(arr: T, length: number): T[]
Uint8Array
copy(src: Uint8Array, dest: Uint8Array): number
concat<T extends Uint8Array>(...arrays: T[]): T
compare(arr1: Uint8Array, arr2: Uint8Array): -1 | 0 | 1
prototype
equals(another: Uint8Array): boolean
split(delimiter: number): this[]
chunk(length: number): this[]
object
import { hasOwn, hasOwnMethod, /* ... */ } from "@ayonli/jsext/object";
// or
import "@ayonli/jsext/object/augment";
Functions
hasOwn(obj: any, key: string | number | symbol): boolean
hasOwnMethod(obj: any, method: string | symbol): boolean
patch<T extends {}, U>(target: T, source: U): T & U
patch<T extends {}, U, V>(target: T, source1: U, source2: V): T & U & V
patch<T extends {}, U, V, W>(target: T, source1: U, source2: V, source3: W): T & U & V & W
patch(target: object, ...sources: any[]): any
pick<T extends object, U extends keyof T>(obj: T, keys: U[]): Pick<T, U>
pick<T>(obj: T, keys: (string | symbol)[]): Partial<T>
omit<T extends object, U extends keyof T>(obj: T, keys: U[]): Omit<T, U>
omit<T>(obj: T, keys: (string | symbol)[]): Partial<T>
as(value: unknown, type: StringConstructor): string | null
as(value: unknown, type: NumberConstructor): number | null
as(value: unknown, type: BigIntConstructor): bigint | null
as(value: unknown, type: BooleanConstructor): boolean | null
as(value: unknown, type: SymbolConstructor): symbol | null
as<T>(value: unknown, type: Constructor<T>): T | null
isValid(value: unknown): boolean
isPlainObject(value: unknown): value is { [x: string | symbol]: any; }
When augmenting, these functions
are attached to the Object
constructor.
json
import { parseAs } from "@ayonli/jsext/json";
// or
import "@ayonli/jsext/json/augment";
Functions
parseAs(text: string, type: StringConstructor): string | null
parseAs(text: string, type: NumberConstructor): number | null
parseAs(text: string, type: BigIntConstructor): bigint | null
parseAs(text: string, type: BooleanConstructor): boolean | null
parseAs<T>(text: string, type: Constructor<T> & { fromJSON?(data: any): T; }): T | null
as(data: unknown, type: StringConstructor): string | null
as(data: unknown, type: NumberConstructor): number | null
as(data: unknown, type: BigIntConstructor): bigint | null
as(data: unknown, type: BooleanConstructor): boolean | null
as<T>(data: unknown, type: Constructor<T> & { fromJSON?(data: any): T; }): T | null
type(ctor: Constructor<any>): PropertyDecorator
When augmenting, these functions
are attached to the JSON
namespace.
math
import { sum, avg, /* ... */ } from "@ayonli/jsext/math";
// or
import "@ayonli/jsext/math/augment";
Functions
sum(...values: number[]): number
avg(...values: number[]): number
product(...values: number[]): number
When augmenting, these functions
are attached to the Math
namespace.
promise
import { timeout, after, /* ... */ } from "@ayonli/jsext/promise";
// or
import "@ayonli/jsext/promise/augment";
Functions
timeout<T>(value: T | PromiseLike<T>, ms: number): Promise<T>
after<T>(value: T | PromiseLike<T>, ms: number): Promise<T>
sleep(ms: number): Promise<void>
until(test: () => boolean | Promise<boolean>): Promise<void>
When augmenting, these functions
are attached to the Promise
constructor.
error
import Exception from "@ayonli/jsext/error/Exception";
// or
import { Exception, toObject, /* ... */ } from "@ayonli/jsext/error";
// or
import "@ayonli/jsext/error/augment";
Types
Exception
(extendsError
)cause?: unknown
code: number
When augmenting, these types are exposed to the global scope.
Functions
toObject<T extends Error>(err: T): { [x: string | symbol]: any; }
fromObject<T extends Error>(obj: { [x: string | symbol]: any; }, ctor?: Constructor<T>): T
toErrorEvent(err: Error, type?: string): ErrorEvent
fromErrorEvent<T extends Error>(event: ErrorEvent): T | null
Error
toObject<T extends Error>(err: T): { [x: string | symbol]: any; }
fromObject<T extends Error>(obj: { [x: string | symbol]: any; }, ctor?: Constructor<T>): T
toErrorEvent(err: Error, type?: string): ErrorEvent
fromErrorEvent<T extends Error>(event: ErrorEvent): T | null
prototype
toJSON(): { [x: string | symbol]: any; }
collections
import BiMap from "@ayonli/jsext/collections/BiMap";
import CiMap from "@ayonli/jsext/collections/CiMap";
// or
import { BiMap, CiMap } from "@ayonli/jsext/collections";
// or
import "@ayonli/jsext/collections/augment";
Types
BiMap<K, V>
(extendsMap<K, V>
) Bi-directional map, keys and values are unique and map to each other.prototype
(additional)getKey(value: V): K | undefined
hasValue(value: V): boolean
deleteValue(value: V): boolean
CiMap<K extends string, V>
(extendsMap<K, any>
) Case-insensitive map, keys are case-insensitive.
When augmenting, these types are exposed to the global scope.
Import all sub-package augmentations at once
import "@ayonli/jsext/augment";